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• Industrial environment 

• Types of problems that need to be addressed 

• Challenge areas 

• Summary 

Overview 
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Environment 

• Diverse problem set 

– Incompressible through hypersonic 

– External aerodynamic and internal (inlet, nozzle) flows 

– Range of aircraft (subsonic transport, transonic, fighters, ISR, 

hypersonic… 

– Range of complexity: components, conceptual, final design  

• Large number of users with range of CFD competence 

• Computational resources are often restricted – difficult to use 

massive parallel resources 

– Need to protect proprietary data 

– Small, compartmentalized programs 

• CFD must buy its way into program application 

– Accurate enough to be relied on for design 

– Cost effective 

– Meet schedules 
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• New Concepts 

– Radical new designs 

– Flow control (example: sweeping jets, synthetic jets) 

• Design 

– Preliminary design – screen a design space 

• Optimization 

– Optimize outer mold line for cruise conditions 

– Meet performance requirements 

• Development 

– Off design 

– Databases: loads, S&C 

– Store separation 

• Analysis of special cases 

– Ground test and flight test anomalies 

– Improvements and modifications 

Diverse CFD Applications on Programs 
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• Conceptual design methods for 

fast turnaround analysis 

– Many configurations need to be 

analyzed 

– Highest fidelity may not be 

required at this stage 

– Focus is frequently on cruise 

design points 

Conceptual Design Requires Tools that Can 

Rapidly Simulate Multiple Configurations 

Vortex 

Lattice 

Full 

Potential 

Euler 

RANS 

• A variety of methods can be 

applied depending on speed 

regime and accuracy desired 

• Methods with automated grid 

generation can be extremely 

valuable for these applications 

LM Aero Employs Splitflow for Conceptual Design 
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Optimization Requires Specialized 

Methods for Efficient Application 
• Optimization requires methods for automated geometry changes 

– Unstructured meshes 

– Cut cell methods 

• Moderate levels of accuracy 

• Computational efficiency is critical 

From Charlton and Davis, AIAA 2008-0376, “Computational 

Optimization of the F-35 External Fuel Tank for Store Separation” 



7 
Copyright  © 2015 by Lockheed Martin Corporation. All Rights Reserved 

• Some cases require capturing flow physics as accurately as possible 

– Critical flight conditions where an aircraft problem is identified 

– Complex, interacting flow phenomena  

• Shocks 

• Separated flows 

• Vortices 

– Capture of unsteady flow phenomena is required for some problems 

• Aero-optics 

• Aero-acoustics 

• Flow control 

• For RANS, need highly accurate models and numerics 

– Explicit algebraic stress or RS closure turbulence models for RANS 

– Extensive model validation 

• For unsteady simulations, high order, low dissipation methods 

– Hybrid RANS/LES 

– LES 

High Fidelity Simulations Required to Analyze 

Flows with Complex Phenomena 



8 
Copyright  © 2015 by Lockheed Martin Corporation. All Rights Reserved 

• Program demands high accuracy 

• Configuration not changing rapidly 

• Many solutions required – database generation – loads, S&C 

– Man-in-the-loop grid generation may be desirable 

– Accurate physical modeling 

For Program Support, Accurate and Efficient 

Methods Needed 

Wooden, Smith and Azevedo, CFD Predictions of Wing Pressure Distributions 

On the F-35 at Angles-of-Attack for Transonic Maneuvers AIAA 2007-4433 
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• We are decades away from being able to use large eddy 

simulation for routine design applications 

• Physical models, and efficient algorithms to solve models, 

are essential to expanded application of CFD 

– Transition prediction 

– Turbulence modeling – separated flows, compressibility 

– Combustion modeling 

– Real gas reactions for hypersonic flow 

– Flow control actuation 

– Icing 

– Ablation 

– … 

Physical Models are Critical to CFD 

Accuracy 
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• Propulsion Aerodynamics Workshop found turbulence models to 

be largest source of differences between predictions 

– Next pages show results for different turbulence models and 

different flow solvers with a range of grid densities and 

solutions algorithms 

– Results show the total pressure recovery near the exit plane 

Computational Methods Have Improved, Modeling 

Issues now Leading Error Term 

Bell 

Mouth 

S-duct 

Exit Plane 

From Domel, Baruzzini and Tworek, “Inlet CFD Results: Comparison of 

Solver, Turbulence Model , Grid Density and Topology,” AIAA 2013-3793 
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Results: Solver 1, 2-eq 
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∆ % Recovery +0.56 

∆ % DPCP40 ave +0.38 

∆ % Recovery +0.58 

∆ % DPCP40 ave +0.39 

∆ % Recovery +0.58 

∆ % DPCP40 ave +0.40 

∆ % Recovery +0.33 
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∆ % Recovery +0.53 
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∆ % Recovery +0.54 

∆ % DPCP40 ave +0.38 
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Results: Solver 1, 1-eq 
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Results: Solver 2, K-KL 
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Results: Solver 2, ASM 
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∆ % Recovery -0.28 

∆ % DPCP40 ave +0.99 

∆ % Recovery -0.28 

∆ % DPCP40 ave +0.98 

∆ % Recovery -0.13 

∆ % DPCP40 ave +0.65 

∆ % Recovery -0.60 

∆ % DPCP40 ave +1.14 

∆ % Recovery -0.40 
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∆ % Recovery -0.39 

∆ % DPCP40 ave +1.09 
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• Results from AIAATurbulence Model Benchmarking Working 

Group website for subsonic jet centerline velocity 

• If these simple flows are not predicted well, what should we expect 

for complex jet flows? 

Standard Turbulence Models do not Capture 

Many Simple Flows Well 
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Transonic Flow over an Axisymmetric Bump – 

Separated Flows Remain a Challenge 
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• SST predicts pressure on bump reasonably well 

• Velocity and shear stress profiles are poorly predicted 

• Results from Turbulence Model Benchmarking Working Group website 

Velocity and Turbulence Profiles not Predicted 

Well for Transonic Flow over Axisymmetric Bump 
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• Automated methods needed for preliminary design and 

optimization 

• Accurate methods needed for system development and maturation 

• Common thread – bigger computers alone insufficient to meet 

needs! 

– Increased automation requires investment in software and 

algorithms for grid generation, flow solution and post 

processing 

– Improved accuracy requires investment in improved physical 

models of turbulence, and robust high order accurate 

numerical methods. 

Industry has a Need for a Diverse Set of Tools to 

Meet Diverse Requirements 
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• Project development efforts have extensive experience using wind tunnel 

data to develop databases 

– Errors in wind tunnel data have been quantified, corrections developed 

– Process is well defined, results are generally repeatable 

• Less experience base with CFD 

– Many error sources not well understood by users or program managers 

– Results can be sensitive to CFD software, grid, models 

– User expertise factor in result quality 

• Once a design is matured, wind tunnel based generation of some data 

bases is more competitive in accuracy and cost 

– Minimal model changes 

– Large data sets can be generated rapidly 

– Off design conditions can be relatively accurate 

• Large numbers of CFD runs with a fixed model can require significant 

computational resources 

– Off design cases may be less accurate (high lift, high angle of attack 

maneuvers) 

– A requirement for a large database generated using unsteady CFD 

(hybrid RANS/LES methods) may not be feasible computationally 

Wind Tunnel vs CFD on Programs 
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• Computational efficiency is important 

• Accurate modeling of turbulence, transition, combustion: 

currently lacking  

• CFD methods and physical models have to be selected for 

each application to obtain acceptable accuracy and 

performance 

• Calibration and validation are an essential part of industrial 

application for complex flow problems 

• Results are dependent on 

– Code 

– Models 

– User competency 

Key Factors for CFD for Military 

Aircraft Environment 
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• Increasing computer power at reduced costs 

provides opportunities for increased application 

of CFD 

• Industrial applications are diverse in terms of level 

of accuracy and efficiency that are required 

• Significant improvement in CFD methods is 

required to harness increased computer power 

Summary 
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